
PostgreSQL 16

and beyond

Amit Kapila
PostgreSQL Committer

and Major Contributor

Fujitsu-Public 2 © Fujitsu 2023

● Ongoing version upgrades once a year

● Enhanced support for large volume data in recent years

6.0

First PostgreSQL Release
Inherits Postgres project at the

University of California, Berkeley, which
had been running since 1986

1997

9.0

• Streaming Replication

2010

9.1

• Synchronous Replication

• Foreign tables

• Unlogged tables

2011

9.2

• Index-only scans

• json data type

2012

9.4

• jsonb data type

2014

9.3

• Update to Foreign
Data Wrapper

• Materialized views

2013

10

• Declarative Partitioning

• Logical Replication

2017

11

• SQL stored procedures

• Partitioning by hash key

2018

12

• Partitioning performance
enhancements

• Table Access Methods

2019

13

• De-duplication in B-tree index

• Incremental sorting

• Parallelized vacuum for indexes

2020

14

• Snapshot scalability (better reads)

• Logical Replication for
in-progress txns

• Reduce bloat for B-tree
index updates

• Parallel foreign table scans
via postgres_fdw

2021

9.5

• Row-level security

• BRIN Index

2016 (Jan)

9.6

• Parallel Sequential Scan

• Multiple standby servers in
sync rep

2016 (Sep)

15

2022

• Merge command

• Shared memory stats

• Row/Column Filtering
in Logical Replication

• Server-side compression for
backups

Evolution of the OSS database PostgreSQL

16

2023 (Q3)

• Logical replication from standby

• Parallel apply of large txns

• SQL/JSON standard compliance

• Faster relation extension

• Load balancing via libpq

Agenda

● Key features and performance improvements in

PostgreSQL 16

● PostgreSQL 17 and beyond

● Key features and performance improvements in

PostgreSQL 16

● PostgreSQL 17 and beyond

Agenda

5Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Logical replication improvements 1/4

CREATE PUBLICATION mypub FOR ALL TABLES;

CREATE SUBSCRIPTION mysub CONNECTION 'dbname=postgres'

PUBLICATION mypub WITH (origin = none);

● Allows to filter the data based on origin during replication

● This can be used to setup n-way logical replication and that will prevent loops when doing bi-directional

replication

● Allow logical decoding from standby

● This requires wal_level = logical on both primary and standby

● This can be used for workload distribution by allowing subscribers

to subscribe from standby when primary is busy

6Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Logical replication improvements

● Allow apply process to perform operations with the table owner's privileges

● Allow non-superusers to create subscription

● The non-superusers must have been granted pg_create_subscription role

● The non-superusers are required to specify a password for authentication

● The superusers can set password_required = false for non-superusers

that own the subscription

2/4

CREATE SUBSCRIPTION mysub CONNECTION ...

PUBLICATION mypub WITH (run_as_owner = false);

7Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Logical replication improvements

● Allow the large transactions to be applied in parallel

● Performance improvement in the range of 25-40% has been observed

● Each large transaction is assigned to one of the available workers. The worker remains assigned until the

transaction completes

● max_parallel_apply_workers_per_subscription indicates the maximum number of parallel apply workers per

subscription

● Allow logical replication to copy tables in binary format

● Copying tables in binary format may reduce the time spent,

depending on column types

3/4

CREATE SUBSCRIPTION mysub CONNECTION ...

PUBLICATION mypub WITH (streaming = parallel);

CREATE SUBSCRIPTION mysub CONNECTION ...

PUBLICATION mypub WITH (binary = true);

https://www.postgresql.org/message-id/CAJpy0uBm0%2ByZs%2B7emKCp2%2BRdvA3Gy_SW0aLfntfHvcEiWq_5Ew%40mail.gmail.com
https://www.postgresql.org/message-id/CAJpy0uBm0%2ByZs%2B7emKCp2%2BRdvA3Gy_SW0aLfntfHvcEiWq_5Ew%40mail.gmail.com

8Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Logical replication improvements

● Allow the use of indexes other than PK and REPLICA IDENTITY on the subscriber

● Using REPLICA IDENTITY FULL on the publisher can lead to a full table scan per tuple change on the subscriber

when REPLICA IDENTITY or PK index is not available

● The index that can be used must be a btree index, not a partial index, and it must have at least one column

reference

● The performance improvement is proportional to the amount of data in the table

4/4

9Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Storage 1/4

● Faster relation extension

● Provides significant improvement (3X for 16 clients) for concurrent COPY into a single relation

● Previously, while holding the relation extension lock, we used to:

● Acquiring a victim buffer for the new page. This may further require writing out the old page contents

including possibly needing to flush WAL

● We write a zero page during the extension, and then later write out the actual page contents. This can

nearly double the write rate

● Now, the relation extension lock is held just for extending the relation

● Allow HOT updates if only BRIN-indexed columns are updated

● We still update BRIN-index if the corresponding columns are updated

● This does not apply to attributes referenced in index predicates,

an update of such attribute always disables HOT

10Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Storage

● Direct I/O

● This allows to ask the kernel to minimize caching effects for relation data and WAL files

● Currently this feature reduces performance and is not intended for end users, so disabled by default

● Can enable by GUC debug_io_direct

● Valid values: data, wal, wal_init

● The further plan is to introduce our own I/O mechanisms, read-ahead, etc. to replace the facilities the kernel

disables with this option.

● Align all I/O buffers at 4096 to have a better performance with direct I/O

● Allow freezing at page level during vacuum

● This reduces the cost of freezing by reducing WAL volume

2/4

11Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Storage

● pg_stat_io view to show detailed I/O statistics

● It contains one row for each combination of backend type, target I/O object, and I/O context, showing cluster-

wide I/O statistics

● Example of backend types: background worker, autovacuum worker, checkpointer, etc.

● Possible type of target I/O objects: Permanent or Temporary relations

● Possible values of I/O context: normal, vacuum, bulkread, bulkwrite

● It tracks various I/O operations like reads, writes, extends, hits, evictions, reuses, fsyncs

● A high evictions count can indicate that shared buffers should be increased

● Large numbers of fsyncs by client backends could indicate misconfiguration

of shared buffers or misconfiguration of the checkpointer

● The stats doesn't differentiate between data which had to be fetched

from disk and that which already resided in the kernel page cache

3/4

12Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Storage

● Allow Vacuum/Analyze to specify buffer usage limit

● A new option BUFFER_USAGE_LIMIT has been added

● This allows user to control the size of shared buffers to use

● Larger values can make vacuum run faster at the cost of slowing down other concurrent queries

● vacuum_buffer_usage_limit (GUC) allows another way to control but BUFFER_USAGE_LIMIT would take

precedence

● GUC allows even autovacuum to use the specified limit

● Add --buffer-usage-limit option to vacuumdb

4/4

13Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

SQL

● Improves general support for text collations, which provide rules for how text is sorted

● This places after , before

● See specifications for details

● New options are added to CREATE COLLATION, CREATE DATABASE, createdb, and initdb to set the rules

● Allows ICU to be the default collation provider

● The decision to make it default is still under discussion

● Adds support for the predefined Unicode and ucs_basic collations

1/8

CREATE COLLATION en_custom (provider = icu, locale = 'en', rules = '&a < g');

g a b

https://unicode-org.github.io/icu/userguide/collation/customization/
https://unicode-org.github.io/icu/userguide/collation/customization/

14Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

SQL

● SQL/JSON standard-conforming constructors for JSON types

2/8

Constructs a JSON object of all the key/value pairs given,
or an empty object if none are given

Behaves like json_object, but as an aggregate function, so it
only takes one key_expression and one value_expression
parameter

Constructs a JSON array from either a series of value_expression
parameters or from the results of query_expression

Behaves in the same way as json_array but as an aggregate function so it
only takes one value_expression parameter

JSON_ARRAY()

JSON_ARRAYAGG()

JSON_OBJECT()

JSON_OBJECTAGG()

15Fujitsu-Public
© Fujitsu 2023

SQL 3/8

SELECT json_array(1,true,json '{"a":null}');
json_array

[1, true, {"a":null}]

SELECT json_arrayagg(v NULL ON NULL) FROM (VALUES(2),(1),(3),(NULL)) t(v);
json_arrayagg

[2, 1, 3, null]

SELECT json_object('code' VALUE 'P123', 'title': 'Jaws', 'title1' : NULL ABSENT ON NULL);
json_object

{"code" : "P123", "title" : "Jaws"}

SELECT json_objectagg(k:v) FROM (VALUES ('a'::text,current_date),('b',current_date + 1)) AS t(k,v);
json_objectagg

--
{ "a" : "2023-05-19", "b" : "2023-05-20" }

● SQL/JSON standard-conforming constructors for JSON types

JSON_ARRAY()

JSON_ARRAYAGG()

JSON_OBJECT()

JSON_OBJECTAGG()

16Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

SQL

● Introduce SQL standard IS JSON predicate

● IS JSON [VALUE]

● IS JSON ARRAY

● IS JSON OBJECT

● IS JSON SCALAR

4/8

SELECT js, js IS JSON "json?", js IS JSON SCALAR "scalar?",

js IS JSON OBJECT "object?", js IS JSON ARRAY "array?"

FROM (VALUES ('123'), ('"abc"'), ('{"a": "b"}'), ('[1,2]')) foo(js);

js | json? | scalar? | object? | array?

------------+-------+---------+---------+--------

123 | t | t | f | f

"abc" | t | t | f | f

{"a": "b"} | t | f | t | f

[1,2] | t | f | f | t

17Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

SQL

● Parallel Hash Full Join

EXPLAIN (COSTS OFF)

SELECT COUNT(*)

FROM simple r FULL OUTER JOIN simple s USING (id);

QUERY PLAN

Finalize Aggregate

-> Gather

Workers Planned: 2

-> Partial Aggregate

-> Parallel Hash Full Join

Hash Cond: (r.id = s.id)

-> Parallel Seq Scan on simple r

-> Parallel Hash

-> Parallel Seq Scan on simple s

5/8

18Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

SQL

● Allow parallel aggregate on string_agg and array_agg

EXPLAIN (COSTS OFF)

SELECT y, string_agg(x::text, ',') AS t, array_agg(x) AS a

FROM pagg_TEST GROUP BY y;

QUERY PLAN

--

Finalize HashAggregate

Group Key: y

-> Gather

Workers Planned: 2

-> Partial HashAggregate

Group Key: y

-> Parallel Seq Scan on pagg_test

6/8

19Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

SQL

● Allow aggregates having ORDER BY or DISTINCT to use pre-sorted data

● Previously, we always needed to sort tuples before doing aggregation

● Now, an index could provide pre-sorted input which will be directly used for aggregation

EXPLAIN (COSTS OFF)

SELECT SUM(c1 order by c1), MAX(c2 ORDER BY c2) FROM presort_test;

QUERY PLAN

--

Aggregate

-> Index Scan using presort_test_c1_idx on presort_test

SET enable_presorted_aggregate=off;

EXPLAIN (COSTS OFF)

SELECT SUM(c1 ORDER BY c1), MAX(c2 ORDER By c2) FROM presort_test;

QUERY PLAN

Aggregate

-> Seq Scan on presort_test

7/8

20Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

SQL

● Cache the last found partition for RANGE and LIST partition lookups

● This reduces the overhead of bulk-loading into partitioned tables where many consecutive tuples belong to the

same partition

● Allow left join removals and unique joins on partitioned tables

CREATE TEMP TABLE a (id int PRIMARY KEY, b_id int);

CREATE TEMP TABLE parted_b (id int PRIMARY KEY) PARTITION BY RANGE(id);

CREATE TEMP TABLE parted_b1 PARTITION OF parted_b FOR VALUES FROM (0) TO (10);

EXPLAIN (COSTS OFF)

SELECT a.* FROM a LEFT JOIN parted_b pb ON a.b_id = pb.id;

QUERY PLAN

Seq Scan on a

8/8

21Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Security/privileges

● Avoid the need to grant superuser privileges for following

● pg_maintain allows executing VACUUM, ANALYZE, CLUSTER, REFRESH MATERIALIZED VIEW, REINDEX, and LOCK

TABLE on all relations

● Alternatively, one can grant MAINTAIN privilege to users

● reserved_connections provides a way to reserve connection slots for non-superusers

● pg_use_reserved_connections allows the use of connection slots reserved via reserved_connections

● Add support for Kerberos credential delegation

● This allows the PostgreSQL server to then use those delegated

credentials to connect to another service, such as with

postgres_fdw or dblink or theoretically any other service

which is able to be authenticated using Kerberos

1/3

22Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Security/privileges

● A new libpq connection option require_auth to specify a list of acceptable authentication methods

● The following methods may be specified: password, md5, gss, sspi, scram-sha-256, none

● This can also be used to disallow certain authentication methods with the addition of

a ! prefix before the method

● If the server does not present one of the allowed authentication requests, the connection attempt done by the

client fails

2/3

23Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Security/privileges

● Introduce GRANT ... SET option

● The SET option, if it is set to TRUE, allows the member to change to the granted role using the SET ROLE

command

● To create an object owned by another role or give ownership of an existing object to another role, you must

have the ability to SET ROLE to that role

● Otherwise, commands such as ALTER ... OWNER TO or CREATE DATABASE ... OWNER will fail

3/3

24Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Miscellaneous performance improvements

● Support for CPU acceleration using SIMD for both x86 and ARM architectures

● Optimizations for processing ASCII and JSON strings, and subtransaction searches

● Connection load balancing in libpq

● load_balance_hosts = random allows hosts and addresses will be connected to in random order

● This parameter can be used in combination with target_session_attrs to load balance over standby servers only

● It is recommended to also configure a reasonable value for connect_timeout to allow

other nodes to be tried when the chosen one is not responding

● Added LZ4 and Zstandard compression options to pg_dump

● Allow COPY into foreign tables to add rows in batches

● This is controlled by the postgres_fdw batch_size option

1/2

25Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Miscellaneous performance improvements

● Improve performance of pg_strtointNN functions

● Testing has shown about 8% speedup of COPY into a table containing 2 INT columns

● Improve speed of hash index builds

● In initial data sort, if the bucket numbers are the same then next sort on hash value

● Speedup hash index builds by skipping needless binary searches

● Hash Index build speed up by 5-15%

● Improve performance of and reduce overheads of memory management

● Reduce the header size for each allocation from 16 or more bytes to 8 bytes

● Improve the performance of the slab memory allocator which is used

to allocate memory during logical decoding

2/2

26Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Compatibility

● Supports a minimum version of Windows 10 for Windows installations

● Removes the promote_trigger_file option to enable the promotion of a standby

● Users should use the pg_ctl promote command or pg_promote() function to promote a standby

● Remove the server variable vacuum_defer_cleanup_age

● This has been unnecessary since hot_standby_feedback and replication slots were added.

● Remove libpq support for SCM credential authentication

● Introduced the Meson build system, which will ultimately replace Autoconf

27Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

Changes in PostgreSQL 16

● The full list of new/enhanced features and other changes can be found here

https://www.postgresql.org/docs/devel/release-16.html
https://www.postgresql.org/docs/devel/release-16.html

● Key features and performance improvements in

PostgreSQL 16

● PostgreSQL 17 and beyond

Agenda

Disclaimer: This section is based on what I could see
being proposed in community at this stage

29Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

PostgreSQL 17 and beyond

● Various improvements in Logical Replication

● DDL Replication

● Replication of sequences

● Synchronization of replication slots to allow failover

● Upgrade of logical replication nodes

● Reuse of tablesync workers

● Time-delayed logical replication

● …

● Reduced number of commands that need superuser privilege

● SQL/JSON improvements to make it more standard compliant

1/4

30Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

PostgreSQL 17 and beyond

● Transparent column encryption

● Automatic, transparent encryption and decryption of particular columns in the client

● Asynchronous I/O

● Will allow prefetching data and will improve system performance

● Large relation files to reduce open/close for huge numbers of file descriptors

● Enhance Table AM APIs

● Amcheck for Gist and Gin indexes

● Improve locking for better scalability

2/4

31Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

PostgreSQL 17 and beyond

● Improvements in vacuum technology by using performance data structure

● Improvements in partitioning technology

● Improve statistics/monitoring

● TDE

● Can help in meeting security compliance in many organizations

● 64bit XIDs

● Can avoid freezing and reduce the need of autovacuum

● Parallelism

● Allow parallel-safe initplans

● Parallelize correlated subqueries

3/4

32Fujitsu-Public
© Fujitsu 2023© Fujitsu 2023

PostgreSQL 17 and beyond

● WAL Size reduction

● Smaller headers in WAL

● Move SLRU into main buffer pool

● TOAST improvements

● Custom formats

● Compression dictionaries

● CI and build system improvements

4/4

Fujitsu-Public 33 © Fujitsu 2023

Thank you

PostgreSQL 16 and beyond

Amit Kapila
PostgreSQL Committer and Major Contributor

	Slide 1
	Slide 2: Evolution of the OSS database PostgreSQL
	Slide 3
	Slide 4
	Slide 5: Logical replication improvements
	Slide 6: Logical replication improvements
	Slide 7: Logical replication improvements
	Slide 8: Logical replication improvements
	Slide 9: Storage
	Slide 10: Storage
	Slide 11: Storage
	Slide 12: Storage
	Slide 13: SQL
	Slide 14: SQL
	Slide 15: SQL
	Slide 16: SQL
	Slide 17: SQL
	Slide 18: SQL
	Slide 19: SQL
	Slide 20: SQL
	Slide 21: Security/privileges
	Slide 22: Security/privileges
	Slide 23: Security/privileges
	Slide 24: Miscellaneous performance improvements
	Slide 25: Miscellaneous performance improvements
	Slide 26: Compatibility
	Slide 27: Changes in PostgreSQL 16
	Slide 28
	Slide 29: PostgreSQL 17 and beyond
	Slide 30: PostgreSQL 17 and beyond
	Slide 31: PostgreSQL 17 and beyond
	Slide 32: PostgreSQL 17 and beyond
	Slide 33

