PostgreSQL 16
and beyond

Amit Kapila

PostgreSQL Committer
and Major Contributor

™

Evolution of the OSS database PostgreSQL

® Ongoing version upgrades once a year

® Enhanced support for large volume data in recent years

1997

First PostgreSQL Release
Inherits Postgres project at the

University of California, Berkeley, which

had been running since 1986

2020

e De-duplication in B-tree index
® Incremental sorting
e Parallelized vacuum for indexes

2021

® Snapshot scalability (better reads)
e Logical Replication for
in-progress txns
® Reduce bloat for B-tree
index updates
e Parallel foreign table scans
via postgres_fdw

Fujitsu-Public

2010

e Streaming Replication

2019

® Partitioning performance
enhancements
® Table Access Methods

2022

® Merge command

e Shared memory stats

e Row/Column Filtering
in Logical Replication

e Server-side compression for
backups

2011

® Synchronous Replication
® Foreign tables
e Unlogged tables

2018

e SQL stored procedures
e Partitioning by hash key

2023 (@3)

Logical replication from standby

Parallel apply of large txns

SQL/JSON standard compliance

Faster relation extension
Load balancing via libpq

2012

® Index-only scans
® json data type

2017

® Declarative Partitioning
e Logical Replication

[e®)
FUJITSU

2013 2014
® Update to Foreign ® jsonb data type

Data Wrapper

® Materialized views

2016 (Sep) 2016 (Jan)
® Parallel Sequential Scan ® Row-level security
® Multiple standby serversin e BRIN Index

sync rep

© Fujitsu 2023

[e®)
FUJITSU

Agenda
® Key features and performance improvementsin
PostgreSQL 16 g - z O ‘

® PostgreSQL 17 and beyond

[e®)
FUJITSU

Agenda
@ Key features and performance improvementsin
PostgreSQL 16 R R, g*" e ‘

® PostgreSQL 17 and beyond

Logical replication improvements FUJITSU

® Allows to filter the data based on origin during replication

CREATE PUBLICATION mypub FOR ALL TABLES;
CREATE SUBSCRIPTION mysub CONNECTION ‘'dbname=postgres'

PUBLICATION mypub WITH (origin = none);

® This can be used to setup n-way logical replication and that will prevent loops when doing bi-directional
replication

® Allow logical decoding from standby
® This requires wal_level = logical on both primary and standby

® This can be used for workload distribution by allowing subscribers
to subscribe from standby when primary is busy

Fujitsu-Public 5

Logical replication improvements FUJITSU

® Allow apply process to perform operations with the table owner's privileges

CREATE SUBSCRIPTION mysub CONNECTION ...

PUBLICATION mypub WITH (run_as_owner = false);

® Allow non-superusers to create subscription
® The non-superusers must have been granted pg_create_subscription role
® The non-superusers are required to specify a password for authentication

® The superusers can set password_required = false for non-superusers
that own the subscription

Fujitsu-Public 6

Logical replication improvements FUJITSU

® Allow the large transactions to be applied in parallel

CREATE SUBSCRIPTION mysub CONNECTION ...

PUBLICATION mypub WITH (streaming = parallel);

® Performance improvement in the range of 25-40% has been observed @

® Each large transaction is assigned to one of the available workers. The worker remains assigned until the
transaction completes

® max_parallel_apply_workers_per_subscription indicates the maximum number of parallel apply workers per
subscription

® Allow logical replication to copy tables in binary format

CREATE SUBSCRIPTION mysub CONNECTION ...

PUBLICATION mypub WITH (binary = true);

® Copying tables in binary format may reduce the time spent,
depending on column types

Fujitsu-Public 7 Fujitsu 2023

https://www.postgresql.org/message-id/CAJpy0uBm0%2ByZs%2B7emKCp2%2BRdvA3Gy_SW0aLfntfHvcEiWq_5Ew%40mail.gmail.com
https://www.postgresql.org/message-id/CAJpy0uBm0%2ByZs%2B7emKCp2%2BRdvA3Gy_SW0aLfntfHvcEiWq_5Ew%40mail.gmail.com

Logical replication improvements FUJITSU

® Allow the use of indexes other than PK and REPLICA IDENTITY on the subscriber
® Using REPLICA IDENTITY FULL on the publisher can lead to a full table scan per tuple change on the subscriber
when REPLICA IDENTITY or PK index is not available

® The index that can be used must be a btree index, not a partial index, and it must have at least one column
reference

® The performance improvement is proportional to the amount of data in the table

Fujitsu-Public 8 © Fifitsu 2023

[e®)
FUJITSU

® Faster relation extension
® Provides significant improvement (3X for 16 clients) for concurrent COPY into a single relation
® Previously, while holding the relation extension lock, we used to:

® Acquiring a victim buffer for the new page. This may further require writing out the old page contents
including possibly needing to flush WAL

® We write a zero page during the extension, and then later write out the actual page contents. This can
nearly double the write rate

® Now, the relation extension lock is held just for extending the relation

® Allow HOT updates if only BRIN-indexed columns are updated
® We still update BRIN-index if the corresponding columns are updated

® This does not apply to attributes referenced in index predicates,
an update of such attribute always disables HOT

Fujitsu-Public 9

[e®)
FUJITSU

® Directl/O
® This allows to ask the kernel to minimize caching effects for relation data and WAL files
® Currently this feature reduces performance and is not intended for end users, so disabled by default
® Can enable by GUC debug_io_direct
® Valid values: data, wal, wal_init

® The further plan is to introduce our own I/O mechanisms, read-ahead, etc. to replace the facilities the kernel
disables with this option.

® Align all I/0 buffers at 4096 to have a better performance with direct 1/O

® Allow freezing at page level during vacuum
® This reduces the cost of freezing by reducing WAL volume

Fujitsu-Public 10

[e®)
FUJITSU

® pg stat_io view to show detailed I/O statistics
® It contains one row for each combination of backend type, target I/O object, and I/O context, showing cluster-
wide 1/0 statistics
Example of backend types: background worker, autovacuum worker, checkpointer, etc.
Possible type of target I/0 objects: Permanent or Temporary relations
Possible values of I/0O context: normal, vacuum, bulkread, bulkwrite
It tracks various |/O operations like reads, writes, extends, hits, evictions, reuses, fsyncs

A high evictions count can indicate that shared buffers should be increased

Large numbers of fsyncs by client backends could indicate misconfiguration
of shared buffers or misconfiguration of the checkpointer

® The stats doesn't differentiate between data which had to be fetched
from disk and that which already resided in the kernel page cache

Fujitsu-Public 11 Fujitsu 2023

[e®)
FUJITSU

® Allow Vacuum/Analyze to specify buffer usage limit

® A new option BUFFER_USAGE_LIMIT has been added

This allows user to control the size of shared buffers to use

Larger values can make vacuum run faster at the cost of slowing down other concurrent queries

vacuum_buffer_usage limit (GUC) allows another way to control but BUFFER_USAGE_LIMIT would take
precedence

® GUC allows even autovacuum to use the specified limit

® Add --buffer-usage-limit option to vacuumdb

Fujitsu-Public 12

© Fifitsu 2023

[e®)
FUJITSU

® Improves general support for text collations, which provide rules for how text is sorted

CREATE COLLATION en_custom (provider = icu, locale

o This places 8 fter [lfore b
® See specifications for details
® New options are added to CREATE COLLATION, CREATE DATABASE, createdb, and initdb to set the rules

® Allows ICU to be the default collation provider
® The decision to make it default is still under discussion

® Adds support for the predefined Unicode and ucs_basic collations

Fujitsu-Public 13

https://unicode-org.github.io/icu/userguide/collation/customization/
https://unicode-org.github.io/icu/userguide/collation/customization/

[e®)
FUJITSU

® SQL/JSON standard-conforming constructors for JSON types

@ JSON_ARRAY()
@ JSON_ARRAYAGG()
Q JSON_OBJECT()
@ JSON_OBJECTAGG()

Fujitsu-Public

>

Constructs a JSON array from either a series of value_expression
parameters or from the results of query_expression

Behaves in the same way as json_array but as an aggregate function so it
only takes one value_expression parameter

Constructs a JSON object of all the key/value pairs given,
or an empty object if none are given

Behaves like json_object, but as an aggregate function, so it
only takes one key_expression and one value_expression
parameter

14

(8
FUJITSU

® SQL/JSON standard-conforming constructors for JSON types

SELECT json_array(1l,true,json '{"a":null}');
@ JSON_ARRAY() j5en_ErrEy
[1, true, {"a":null}]

SELECT json_arrayagg(v NULL ON NULL) FROM (VALUES(2),(1),(3),(NULL)) t(v);

@ JSON_ARRAYAGG() Json_arrayage
[2, 1, 3, null]

SELECT json_object('code' VALUE 'P123', 'title': 'Jaws', 'titlel' : NULL ABSENT ON NULL);

Q JSON_OBJECT() json_object
{"code" : "P123", "title" : "

SELECT json_objectagg(k:v) FROM (VALUES ('a'::text,current_date),('b',current_date + 1)) AS t(k,v);
json_objecta
@ JSON_OBJECTAGG() kgL

" : "2023-05-19", "b" : "2023-05-20" }

Fujitsu-Public 15 © Fujitsu 2023

[e®)
FUJITSU

® |Introduce SQL standard IS JSON predicate
® IS JSON [VALUE]
® [S JSON ARRAY
® IS JSON OBJECT
® IS JSON SCALAR

SELECT js, js IS JSON "json?", js IS JSON SCALAR "scalar?",
js IS JSON OBJECT "object?", js IS JSON ARRAY "array?"
FROM (VALUES ('123'), ('"abc"'), ('{"a": "b"}"), ('[1,2]"')) foo(Js);

Fujitsu-Public 16

Fujitsu 2023

P
FUJITSU

® Parallel Hash Full Join

EXPLAIN (COSTS OFF)
SELECT COUNT(*)
FROM simple r FULL OUTER JOIN simple s USING (id);
QUERY PLAN

Finalize Aggregate
-> Gather

Workers Planned: 2
-> Partial Aggregate
-> Parallel Hash Full Join
Hash Cond: (r.id = s.id)
-> Parallel Seq Scan on simple r
-> Parallel Hash
-> Parallel Seq Scan on simple s

Fujitsu-Public 17 © Fifitsu 2023

[e®)
FUJITSU

® Allow parallel aggregate on string_agg and array_agg

EXPLAIN (COSTS OFF)
SELECT y, string agg(x::text,
FROM pagg_ TEST GROUP BY y;
QUERY PLAN

,') AS t, array_agg(x) AS a

Finalize HashAggregate

Group Key: y
-> Gather
Workers Planned: 2
-> Partial HashAggregate
Group Key: y
-> Parallel Seq Scan on pagg_test

Fujitsu-Public 18

(8
FUJITSU

® Allow aggregates having ORDER BY or DISTINCT to use pre-sorted data
Previously, we always needed to sort tuples before doing aggregation

Now, an index could provide pre-sorted input which will be directly used for aggregation

EXPLAIN (COSTS OFF)
SELECT SUM(cl order by c1), MAX(c2 ORDER BY c2) FROM presort test;
QUERY PLAN

Aggregate
-> Index Scan using presort_test_cl_idx on presort_test

SET enable_presorted_aggregate=off;

EXPLAIN (COSTS OFF)
SELECT SUM(c1 ORDER BY c1), MAX(c2 ORDER By c2) FROM presort_test;
QUERY PLAN

Aggregate
-> Seq Scan on presort_test

Fujitsu-Public 19 ujitsu 2023

P
FUJITSU

® Cache the last found partition for RANGE and LIST partition lookups

® This reduces the overhead of bulk-loading into partitioned tables where many consecutive tuples belong to the
same partition

® Allow left join removals and unique joins on partitioned tables

CREATE TEMP TABLE a (id int PRIMARY KEY, b_id int);
CREATE TEMP TABLE parted b (id int PRIMARY KEY) PARTITION BY RANGE(id);
CREATE TEMP TABLE parted bl PARTITION OF parted b FOR VALUES FROM (@) TO (10);

EXPLAIN (COSTS OFF)

SELECT a.* FROM a LEFT JOIN parted_b pb ON a.b_id = pb.id;
QUERY PLAN

Seq Scan on a

Fujitsu-Public 20 Fujitsu 2023

Security/privileges () FUﬁTSU

® Avoid the need to grant superuser privileges for following

® pg_maintain allows executing VACUUM, ANALYZE, CLUSTER, REFRESH MATERIALIZED VIEW, REINDEX, and LOCK
TABLE on all relations

® Alternatively, one can grant MAINTAIN privilege to users
® reserved_connections provides a way to reserve connection slots for non-superusers

® pg_use_reserved connections allows the use of connection slots reserved via reserved_connections

® Add support for Kerberos credential delegation

® This allows the PostgreSQL server to then use those delegated
credentials to connect to another service, such as with
postgres_fdw or dblink or theoretically any other service
which is able to be authenticated using Kerberos

Fujitsu-Public 21

© Fifitsu 2023

Security/privileges D, FUﬁTSU

® A new libpg connection option require_auth to specify a list of acceptable authentication methods
® The following methods may be specified: password, md5, gss, sspi, scram-sha-256, none

® This can also be used to disallow certain authentication methods with the addition of
a @ prefix before the method

@ |f the server does not present one of the allowed authentication requests, the connection attempt done by the
client fails

Fujitsu-Public

22

Security/privileges () FUﬁTSU

® Introduce GRANT ... SET option

® The SET option, if it is set to TRUE, allows the member to change to the granted role using the SET ROLE
command

® To create an object owned by another role or give ownership of an existing object to another role, you must
have the ability to SET ROLE to that role

® Otherwise, commands such as ALTER ... OWNER TO or CREATE DATABASE ... OWNER will fail

Fujitsu-Public 23

. . (9]
Miscellaneous performance improvements () FUJITSU

® Support for CPU acceleration using SIMD for both x86 and ARM architectures

® Optimizations for processing ASCIl and JSON strings, and subtransaction searches

® Connection load balancing in libpqg
® |oad_balance_hosts = random allows hosts and addresses will be connected to in random order
® This parameter can be used in combination with target_session_attrs to load balance over standby servers only
® |tis recommended to also configure a reasonable value for connect_timeout to allow
other nodes to be tried when the chosen one is not responding

® Added LZ4 and Zstandard compression options to pg_dump

® Allow COPY into foreign tables to add rows in batches

@ This is controlled by the postgres_fdw batch_size option

Fujitsu-Public 24 © Fifitsu 2023

. . (9]
Miscellaneous performance improvements () FUJITSU

® Improve performance of pg_strtointNN functions

@ Testing has shown about 8% speedup of COPY into a table containing 2 INT columns

® |mprove speed of hash index builds
® Ininitial data sort, if the bucket numbers are the same then next sort on hash value
® Speedup hash index builds by skipping needless binary searches
® Hash Index build speed up by 5-15%

® |mprove performance of and reduce overheads of memory management
® Reduce the header size for each allocation from 16 or more bytes to 8 bytes

® Improve the performance of the slab memory allocator which is used
to allocate memory during logical decoding

Fujitsu-Public 25 Fujitsu 2023

Compatibility FUﬁTSU

Supports a minimum version of Windows 10 for Windows installations

Removes the promote_trigger file option to enable the promotion of a standby

® Users should use the pg_ctl promote command or pg_promote() function to promote a standby
® Remove the server variable vacuum_defer_cleanup_age

@ This has been unnecessary since hot_standby_feedback and replication slots were added.

Remove libpqg support for SCM credential authentication

Introduced the Meson build system, which will ultimately replace Autoconf

Fujitsu-Public 26

Changes in PostgreSQL 16 FUﬁTSU

® The full list of new/enhanced features and other changes can be found here @

Fujitsu-Public 5%/

https://www.postgresql.org/docs/devel/release-16.html
https://www.postgresql.org/docs/devel/release-16.html

Agenda FUjTSU

® Key features and performance improvements in e
PostgreSQL 16 T i "'"i‘é ‘

Disclaimer: This section is based on what | could see

. POStg reSQL 17 d nd b_eyon d being proposed in community at this stage

PostgreSQL 17 and beyond FUJITSU

® \arious improvements in Logical Replication
DDL Replication

Replication of sequences

Synchronization of replication slots to allow failover
Upgrade of logical replication nodes

Reuse of tablesync workers

Time-delayed logical replication

® Reduced number of commands that need superuser privilege

® SQL/JSON improvements to make it more standard compliant

Fujitsu-Public 29 Fujitsu 2023

PostgreSQL 17 and beyond FUJITSU

® Transparent column encryption
® Automatic, transparent encryption and decryption of particular columns in the client

® Asynchronous I/O

@ Will allow prefetching data and will improve system performance

Large relation files to reduce open/close for huge numbers of file descriptors
Enhance Table AM APIs

Amcheck for Gist and Gin indexes

Improve locking for better scalability

Fujitsu-Public 30 © Fifitsu 2023

PostgreSQL 17 and beyond FUJITSU

Improvements in vacuum technology by using performance data structure
Improvements in partitioning technology
Improve statistics/monitoring

TDE

® Can help in meeting security compliance in many organizations

® 64bit XIDs

® Can avoid freezing and reduce the need of autovacuum
® Parallelism

® Allow parallel-safe initplans

® Parallelize correlated subqueries

Fujitsu-Public 31

PostgreSQL 17 and beyond FUﬁTSU

® WAL Size reduction

® Smaller headers in WAL

® Move SLRU into main buffer pool
® TOAST improvements

® Custom formats
® Compression dictionaries

® (Cl and build system improvements

Fujitsu-Public 32

Thank you

PostgreSQL 16 and beyond

Amit Kapila

PostgreSQL 7 mn

¥ .

	Slide 1
	Slide 2: Evolution of the OSS database PostgreSQL
	Slide 3
	Slide 4
	Slide 5: Logical replication improvements
	Slide 6: Logical replication improvements
	Slide 7: Logical replication improvements
	Slide 8: Logical replication improvements
	Slide 9: Storage
	Slide 10: Storage
	Slide 11: Storage
	Slide 12: Storage
	Slide 13: SQL
	Slide 14: SQL
	Slide 15: SQL
	Slide 16: SQL
	Slide 17: SQL
	Slide 18: SQL
	Slide 19: SQL
	Slide 20: SQL
	Slide 21: Security/privileges
	Slide 22: Security/privileges
	Slide 23: Security/privileges
	Slide 24: Miscellaneous performance improvements
	Slide 25: Miscellaneous performance improvements
	Slide 26: Compatibility
	Slide 27: Changes in PostgreSQL 16
	Slide 28
	Slide 29: PostgreSQL 17 and beyond
	Slide 30: PostgreSQL 17 and beyond
	Slide 31: PostgreSQL 17 and beyond
	Slide 32: PostgreSQL 17 and beyond
	Slide 33

